Low Temperature Catalytic Cracking of Heavy Feedstock Optimized by Response Surface Method

Authors

  • Elham Sadat Moosavi Department of Materials and Chemical Engineering, Buein Zahra Technical University, Buein Zahra, Qazvin, P.O. Box 34517-45346, Iran
  • Ramin Karimzadeh Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Tehran, P.O. Box 14155-4838, Iran
  • Sina Alizad Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Tehran, P.O. Box 14155-4838, Iran
Abstract:

Upgrading of cracked PFO (Pyrolysis fuel oil) for production of fuels, such as gasoline and light gasoil, was carried out in a semi batch reactor. Two different kinds of mesoporous and microporous catalysts, MCM-41 and ZSM-5, were used. Modification methods, such as ion exchange and impregnation with Fe and Ti, were done for tuning the acidity of the catalyst. XRD, FT-IR, and XRF analyzes were used to identify the structure and composition of the catalysts. Among the catalysts used in low temperature catalytic cracking of cracked PFO in a moderate temperature (380 °C), 3%Ti/H-MCM-41 showed the best catalytic performance. After choosing the best catalyst, an experimental design was carried out using response surface method with a five-level central composite design model. The effect of 3 main parameters, i.e. reaction temperature (360-400 °C), catalyst to feed ratio (0.04-0.1), and loading of Ti (0-5%) were investigated on liquid productivity and light olefin production. Design Expert software was used to maximize the sum of liquid yield and olefins in the gas. The best catalyst is 2.5%Ti/H-MCM-41. In optimum, 380 °C with the ratio of 0.1 g/g catalyst to feed over 2.5%Ti/H-MCM-41, the wt.% of liquid, gas, and solid products are 80 wt. %, 10 wt. %, and 10 wt. %, respectively. At this condition, 26 wt. % of liquid product was in the range of gasoline (C5-C10) and the rest (i.e. C11+) was considered in the range of light gas oil. Light olefins of the obtained gas products were about 2.74 wt. %.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

‏‎suppression of coke formation in thermal cracking by coke inhibitors‎‏

‏‎the main purpose of this research was to:1.develop a coking model for thermal cracking of naphtha.2.study coke inhibition methods using different coke inhibitors.developing a coking model in naphtha cracking reactors requires a suitable model of the thermal cracking reactor based on a reliable kinetic model.to obtain reliable results all these models shall be solved simultaneously.for this pu...

15 صفحه اول

Production of Cereal- based Probiotic Beverage Optimized by Response Surface Methodology and Investigation of Its Properties

Background and Objectives: In general, most probiotic products are dairy-based and a few efforts have been made to develop probiotic products using other substrates such as cereal grains. Rice can be used as a basis for the production of many functional foods. However, rice in Iran is mostly consumed as plate food rather than in the formulation of relevant functional foods. In this study, the r...

full text

Optimization and Modeling of CuOx/OMWNT’s for Catalytic Reduction of Nitrogen Oxides by Response Surface Methodology

A series of copper oxide (CuOx) catalysts supported by oxidized multi-walled carbon nanotubes (OMWNT’s) were prepared by the wet impregnation method for the low temperature (200 °C) selective catalytic reduction of nitrogen oxides (NOx) using NH3 as a reductant agent in the presence of excess oxygen. These catalysts were characterized by FTIR, XRD, SEM-EDS, and H2-TPR meth...

full text

Optimized Removal of Sodium Dodecylbenzenesulfonate by Fenton-Like Oxidation Using Response Surface Methodology

This study investigates the degradation of sodium dodecylbenzenesulfonate (SDBS) in aqueous solution by the Fenton-like oxidation process. The effects of different parameters such as concentrations of ferric chloride and hydrogen peroxide, pH and reaction time on the SDBS removal and Chemical Oxygen Demand (COD) reduction were evaluated. Response Surface Methodology (RSM) with Central Compo...

full text

Catalytic and Non-catalytic Conversion of Methane to C2 Hydrocarbons in a Low Temperature Plasma

The direct conversion of methane to C2 hydrocarbons, in a quartz tube reactor enforced by a DC corona discharge, was investigated at atmospheric pressure. The process was carried out in the presence of metal oxide catalysts of Mn/W/SiO2, Mn/W/SiO2 (tetraethyl orthosilicate, TEOS), and Mn/W/CNT (supported on carbon nanotubes). The total yield to C2 hydrocarbons in the presence of metal oxide cat...

full text

Kanemite: an easily prepared and highly efficient catalyst for biodiesel production optimized by response surface methodology

Kanemite was readily prepared and used as solid base catalyst for transesterification of sunflower oil to fatty acid methyl ester (FAME). The catalyst was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption-desorption and field emission scanning electron microscopy (FESEM) techniques. Central Composite Design (CCD) coupled with Response Surfac...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 54  issue 1

pages  13- 33

publication date 2020-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023